Microstructure and Tensile Property of Hybrid Fabricated Ti-6Al-4V Alloy by Investment Casting and Laser Additive Manufacturing
نویسندگان
چکیده
Hybrid manufacturing of titanium alloys by investment casting and laser additive (LAM) combines the advantages both techniques can further reduce cost. In this study, microstructure evolution in bonding zone tensile property hybrid Ti-6Al-4V alloy are carefully investigated. Results show that sample consists LAM zone, heat-affected (HAZ) base zone. A transition (TZ) forms within HAZ close to fusion line. Grains bottom much finer with a mixture equiaxed grain small columnar grain, gradually coarsening fully large grains. Typical ultra-fine basket-wave TZ, changes from fine coarsened bimodal microstructure. The highest microhardness is 491 HV. fracture occurs half, strength reaches (821 ± 31) MPa, which higher than pure ((778 22) MPa). However, elongation ((8.0 0.5)%) lower ((10.0 1.7)%).
منابع مشابه
Effect of Molten Pool Size on Microstructure and Tensile Properties of Wire Arc Additive Manufacturing of Ti-6Al-4V Alloy
Wire arc additive manufacturing (WAAM) technique is a cost-competitive and efficient technology to produce large structure components in industry domains. Mechanical properties are mainly dominated by the microstructure of the components, which is deeply affected by the molten pool size. In this work, to investigate the effect of the molten pool size on microstructure and mechanical properties ...
متن کاملLaser Powder Cladding of Ti-6Al-4V α/β Alloy
Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully mad...
متن کاملCharacterization of the microstructure, tensile and creep behavior of powder metallurgy processed and rolled Ti-6Al-4V-1B Alloy
This work investigated the microstructure and elevated-temperature (400-475C) tensile and tensile-creep deformation behavior of a powder metallurgy (PM) rolled Ti-6Al-4V-1B(wt.%) alloy. The PM rolled Ti-6Al-4V-1B alloy exhibited a duplex microstructure, and it did not exhibit a strong α-phase texture compared with the PM extruded Ti-6Al-4V-1B alloy. The PM rolled Ti6Al-4V-1B alloy exhibited gre...
متن کاملMICROSTRUCTURE, HARDNESS AND SURFACE ROUGHNESS CHARACTERIZATION OF EBM FABRICATED Ti-6Al-4V SAMPLES
Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown prim...
متن کاملMicrostructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications.
The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti-6Al-4V. Microstructures are characterized utilizing optical metallography (OM), scanning electron microscopy (SE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metals
سال: 2023
ISSN: ['2075-4701']
DOI: https://doi.org/10.3390/met13040668